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Electronic band structures of Ge_,Sn, semiconductors: A first-principles
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We conduct first-principles total-energy density functional calculations to study the band structures in
Ge;_,Sn, infrared semiconductor alloys. The norm-conserving optimized pseudopotentials of Ge and
Sn have been constructed for electronic structure calculations. The composition-bandgap relationships
in Ge,_,Sn, lattices are evaluated by a detailed comparison of structural models and their electronic
band structures. The critical Sn composition related to the transition from indirect- to direct-gap in
Ge,_,Sn, alloys is estimated to be as low as x ~ 0.016 determined from the parametric fit. Our results
show that the crossover Sn concentration occurs at a lower critical Sn concentration than the values
predicted from the absorption measurements. However, early results indicate that the reliability of the
critical Sn concentration from such measurements is hard to establish, since the indirect gap absorption
is much weaker than the direct gap absorption. We find that the direct band gap decreases exponentially
with the Sn composition over the range 0 <x < 0.375 and the alloys become metallic for x > 0.375,
in very good agreement with the theoretical observed behavior [D. W. Jenkins and J. D. Dow, Phys.
Rev. B 36, 7994, 1987]. For homonuclear and heteronuclear complexes of Ge;_,Sn, alloys, the indirect
band gap at L-pointis is found to decrease homonuclear Ge-Ge bonds or increase homonuclear Sn-Sn
bonds as a result of the reduced L valley. All findings agree with previously reported experimental and
theoretical results. The analysis suggests that the top of valence band exhibits the localization of bond
charge and the bottom of the conduction band is composed of the Ge 4s4p and/or Sn 5s5p atomic

orbits. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790362]

. INTRODUCTION

The group IV semiconductors open up new doors in the
development of important devices across a variety of applica-
tions such as infrared (IR) photodetectors, sensors, emitters,
and related photonics systems. The radiative recombination
and light absorption in semiconductor devices rely on materials
possessing direct band gaps. Interestingly, none of the column
IV materials are direct-gap semiconductors, such as the indi-
rect band gap of the germanium and the zero-gap of the cubic
a-tin.'? Fortunately, Ge;_,Sn, alloys have been wildly
reported to undergo a transition from indirect- to direct-gap
semiconductors for x=0.09 ~0.26."® For example, Pérez
Ladrén de Guevara ef al. showed that the crossover Sn concen-
tration from the indirect to the direct band gap in Ge;_,Sn,
alloys is close to the predicted value x = 0.09 based on obser-
vations obtained by the fast-Fourier-transform infrared interfer-
ometer (FFT-IR).> Using spectroscopic ellipsometry and
photoreflectance, D’Costa et al. observed that the critical Sn
composition x for a transition from the indirect to the direct
band gap should be less than 0.11, since the indirect gap
absorption is much weaker than the direct gap absorption and
is hard to measure the critical value where the transition hap-
pens.* The composition-bandgap relationship in Ge,_.Sn,
alloys has increased the interest in using ab initio pseudopoten-
tial calculations in the virtual crystal approximation (VCA),
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but the VCA shows significant departures of experimental
band gaps with increasing Sn concentrations.™”* On the other
hand, Moontragoon et al. reported that the Ge;_,Sn, band gap
becomes a direct gap material for Sn content > 17% using the
charge self-consistent pseudopotential Xo calculations within a
mixed-atom approximation.” However, the critical Sn compo-
sition (17%) related to the dominant direct-band-gap transi-
tions, which severely overestimates the one in Ref. 3
(0.10 < x < 0.13), does not provide much improvement as
derived by averaging over all possibilities of several random
configurations at each composition of Ge;_,Sn,. Furthermore,
first-principles calculations using the zincblende (ZB) structure
were widely and theoretically evaluated to illustrate the
composition-bandgap relationships of homogeneous Ge;_,Sn,
alloys.m_12 For example, the electronic band structures of the
7ZB phase of the ordered GegsSngs (x = 0.5) exhibit a direct
small band gap (0.1eV) investigated using a linear combina-
tion of atomic orbitals (LCAO) approach within the general-
ized gradient approximation (GGA) for exchange and
correlation.'® From a theoretical point of view, the screened-
exchange local density approximation (sX-LDA) formalism of
the exchange-correlation potential term provides very good
band gaps for common IV-IV semiconductors to overcome the
short-coming of standard density functional theory (DFT)
methods based on GGA or LDA." So far, to our knowledge,
no one has predicted the composition-bandgap relationship in
Ge;_Sn, lattices under the computationally much more
demanding sX-LDA formalism.

© 2013 American Institute of Physics
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Synthesis of Ge;_,Sn, alloys are compositional meta-
stability due to a lower Sn surface free energy than Ge, which
in turn cause surface segregation and compositional fluctua-
tions of f-Sn defects, i.e., Sn-atoms occupying the center of
Ge-divacancies with a local change of symmetry or namely
the split-vacancy and full-vacancy configuration of Sn in Ge,
appearing increases at larger temperatures.'*"'® In particular,
the inhomogeneities were related to the appearance of
non-substitutional Sn in the Ge;_,Sn, alloy at higher
Sn-concentrations. In contrast, homogeneous Ge;_,Sn, alloys
at high Sn-concentrations, Sn atoms on the substitutional site
only, have been demonstrated by using nonequilibrium
growth methods such as low energy molecular beam epitaxy
(MBE) or low-temperature chemical vapor deposition (CVD).
He et al. reported that the excellent crystallinity of homogene-
ous metastable Ge,_,Sn, alloy films with Sn compositions up
to x = 0.34 on Ge/Si(001) substrates has proved to inhibit Sn
segregation without interrupting epitaxy by using ion-assisted
MBE and reducing the growth temperature.'” Moreover, the
other experimental evidence showed that Ge;_ Sn, alloy films
as homogeneous alloys certainly for x > 0.90 exhibit the
growth and stability of epitaxially Ge,_,Sn, alloys grown on
InSb and InSb/GaAs reported by Fitzgerald er al.'® However,
no measurements of the band gaps have been made for cubic
homogeneous Ge;_,Sn, alloy films above a Sn-concentration
of around 20% and thus little is known about the change in
electronic structure with the alloy composition which restricts
their usefulness for device applications.

In this report, we model 8-atom cubic unit cells of the
Ge,_,Sn, alloys, in which Sn and Ge are distributed on the
various substitutional sites to form alloy structures as homo-
geneous alloys. Second, we calculate the fully relaxed latti-
ces of the various possible Ge;_,Sn, alloys to yield the
lowest energy configuration by conducting first-principles
DFT sX-LDA calculations. Third, we calculate the electronic
band structures of energetically favorable Ge; _,Sn, alloys to
predict the indirect- or direct-gap in Ge;_,Sn, alloys.
Finally, key theoretical findings related to structural and
electronic properties are elucidated.

Il. COMPUTATIONAL METHODS

To generate reliable pseudopotentials of Ge and Sn for
the purpose of this study, we used the norm-conserving opti-
mized pseudopotential generation scheme'® implemented in
opium code,”® with the choice of ¢. in the style suggested by
Lee er al.*' We used the neutral atomic configuration of Ge
and Sn. To reproduce more reliable results of band structures
and lattice constants of pure Ge and Sn, we included unbound
4d states as d-channel for Ge and treated 4d shallow core
states as valence in Sn. The pseudization radii r.(s, p,d) cho-
sen for Ge and Sn are (2.0, 2.0, 2.4) ay and (1.80, 2.20, 2.75)
ay, respectively. As for the wave vector cut-off, g.=4.5 ay'
is set for Ge and ¢.=5.0 a; ' is set for Sn. Four Bessel func-
tions terms for the pseudo-orbitals in the core region were
used for expanding pseudized wave functions and s-channels
are chosen as local components in both pseudopotentials.

The structural properties and band gaps of the diamond-
like cubic germanium and tin were carried out using the
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Cambridge serial total energy package (CASTEP).**** These
calculations were achieved via sX-LDA formalism in con-
junction with a 4 x 4 x 4 Monkhorst-Pack grid in the first
Brillouin zone and a 350eV energy cutoff. The cell dimen-
sions and atomic positions were optimized to yield the ground
state crystalline structures. Our calculated equilibrium lattice
constants are 5.766 A for germanium and 6.656 A for a-Sn,
which are consistent with previously reported experimental
data (ag, = 5.658 A and ag, = 6.493 A) and theoretical results
(age=5.625 A and ag, = 6.454 A).>*

The electronic band structures of various Ge;_,Sn,
models can be determined by the relative positions of the
minimum conduction band at the I'-, X-, and L-points in the
first Brillouin zone. The I'-point is the center of the zone.
The X-points at (2n/a)(1,0,0) are the intersections with the
zone surface along the six equivalent (100) directions. Simi-
larly the L-points at (m/a)(1,1,1) are the intersections with
the zone surface along the eight equivalent (111) directions,
where a is the lattice constant. Band structures for the germa-
nium and cubic «-tin are shown in Fig. 1, which indicate an
L-point indirect band gap of 0.692eV in Ge and a zero-gap
of the cubic a-tin. The calculated band gap of Ge is consist-
ent with the well-known values of 0.66eV.”*~

lll. STRUCTURAL PROPERTIES OF GERMANIUM-TIN
ALLOYS

We undertook a series of eight-atom cubic lattice unit
cells of Ge;_,Sn, alloys with a Sn/Ge ratio of 1/7, 2/6, 3/5,
4/4, 5/3, 6/2, and 7/1 (where discrete Sn compositions of
12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% or
x=0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and 0.875). The
structural properties of thirteen Ge;_,Sn, arrangements were
modeled by randomly distributing Ge and Sn atoms within
an 8-atom cubic lattice unit cell. Specifically, the Ge;_,Sn,
alloys of the intermediate compositions include one type
each of x=0.125 and x=0.875 alloys, two types each of
x=0.25, x=0.375, x=0.625, and x=0.75 alloys, and three
types each of x=0.5 alloys. The cohesive energies and
equilibrium lattice constants were deduced from the resulting
energy-volume data. Seven lowest energy Ge;_,Sn, arrange-
ments of the intermediate compositions are selected and
denoted by Geo 125510875, Geo255n0.75, Geo.3755n0.625,
Geo.sSno.s5, Geo255M0.375, Geo.755n0.25, and Geg g755n0. 125
models, which are isotropic arrangements. Fig. 2 shows
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FIG. 1. Band structures of Ge and Sn. The dashed line is the Fermi level.
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FIG. 2. Compositional dependence of lattice parameters in Ge;_,Sn, alloys.
The atoms are represented by spheres: Ge (green, small) and Sn (gray, large).

lattice parameters related to the pure germanium, seven iso-
tropic Ge;_,Sn, arrangements of the intermediate composi-
tions, and o-Sn. The strong linear relation between lattice
parameters and composition of Ge;_,Sn, alloys exhibits
Vegard behavior and can be written as dg., .sn, = dspX
+age(1 —x) + bx(1 — x), yielding a bowing coefficient
b=0.104 A. The calculated bowing coefficient (b =0.104 A)
is consistent with the reported experimental observation
(h=0.166 A).**

IV. BAND STRUCTURES OF GERMANIUM-TIN
ALLOYS

The minimum band gaps of the pure germanium, the
isotropic Ge;_,Sn, arrangements, and «-Sn for I', X, and L
valleys are calculated as a function of Sn compositions
described in Fig. 3. The I'-point band gaps are exponentially
dependent on Sn compositions, which showed that an expo-
nential decay function fits the results of the I'-point band
gaps with a very high correlation coefficient of 0.9997. The
dependence of the X-point band gap on Sn compositions

1'8 T T T T T T T T T
1.6 -o-——°-'
1.4 __o..—o-—-g"é‘ o
§ 1.2 A L valleys
2 10 0O I valleys
O X valleys
g o0s Y
=0
=  0.6\-.,
= .\ . A-.._
S 04 - T, o A i
m \' '-A ..' ..... ..'
0.2 ﬂ_\ A &
- .t
0.0 D‘-—-ﬁ_._.a._._a_._..g_._a._.
-0'2 T T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Sn concentration x

FIG. 3. Compositional dependence of band parameters at various valleys.
The empty triangles, squares, and circles correspond to the L-point, I'-point,
and X-point band gaps. The top dashed line represents a linear fit to X
valleys. The dotted line traces L valleys. The dashed-dotted line is an expo-
nential fit to I" valleys.
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exhibits a simplest linear function relation with a correlation
coefficient of 0.8104. In contrast, the L-point band gaps are
highly sensitive to Sn compositions. It is noted that Ge is
characterized by an L-point indirect fundamental energy gap.
It is apparent that isotropic Ge;_,Sn, arrangements of the in-
termediate compositions are direct-gap semiconductors with
Sn compositions in the range of 0 < x < 0.375 and are pre-
dicted to have zero gap for x > 0.375, in reasonable agree-
ment with the theoretical observed behavior.? The calculated
indirect-direct band gap crossover in Ge;_,Sn, alloys is
found close to approximately tin content as low as 0.016,
which is extracted from appropriate curve-fitting of I' and L
valley band gaps. According to previously reported theoreti-
cal results, the number of homonuclear Sn-Sn and Ge-Ge
bonds or heteronuclear analogues such as Sn-Ge and Ge-Sn
can change the band structure dramatically.?® For example,
for a given composition such as GeysSng s, one can create
different pseudo-random alloys which contain various num-
ber of Ge-Ge, Sn-Sn, and Ge-Sn (or Sn-Ge) bonds, which
can alter the band gap. Table I lists the results of our bonding
analyses for 9 models in Fig. 2, indicating that L-point band
gaps will be large for pure homonuclear or heteronuclear
systems such as the pure germanium (16 homonuclear
Ge-Ge bonds), GeysSngs (16 heteronuclear Ge-Sn bonds),
and o-Sn (16 homonuclear Sn-Sn bonds) as shown in Table 1.
In the cases of the mixture of homonuclear and heteronuclear
systems, L-point band gaps decrease with decreasing homonu-
clear Ge-Ge bonds for Gegg755n0125, Geg755n025, and
Geg 625510 375 models or increasing homonuclear Sn-Sn bonds
for Geg 3755n0.625, G€0.255n0.75, and Geg, 12550 875, models.

V. ELECTRONIC PROPERTIES OF GERMANIUM-TIN
ALLOYS

The electronic property at a given alloy is obtained from
DFT by analyzing the highest occupied Kohn-Sham orbitals
(HOMO) and lowest unoccupied Kohn-Sham orbitals
(LUMO) in conjunction with optimized atomic structures.
The HOMO and LUMO isosurfaces of 9 models (see Fig. 2)
are displayed in Fig. 4. We clearly see that the HOMO levels
of 9 models are localized on the midpoint positions between
two atoms as localized bond charge pockets (Fig. 4, left).
Our 3D HOMO isosurfaces show that the homonuclear and/
or heteronuclear bonds can distort the L-point band gaps (see
Fig. 3 and Table I) but do not modify the intrinsic nature of

TABLE I. Bonding analyses of various compositions of Ge;_,Sn, alloys
shown in Fig. 2. Each energetically favorable Ge;_,Sn, lattice has sixteen
bonds dominated by three main analogues, which are referred to as the Ge-
Ge, Ge-Sn, and Sn-Sn bonds.

X

Bond 0% 0.1250° 0.250° 0.375° 0.500° 0.625° 0.750° 0.875° 1.000°

Ge-Ge 16 12 9 4

Ge-Sn 4 6 12 16 12 8 4

Sn-Sn 1 4 8 12 16
“Indirect band gap

"Direct band gap

“Zero gap
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FIG. 4. HOMO and LUMO isosurfaces of Ge;_,Sn, alloys denoted by the
shade of blue. The atoms are represented by spheres: Ge (green, small) and
Sn (gray, large).

the HOMO isosurfaces in Ge;_,Sn, semiconductors. The
LUMO isosurfaces are significantly different from the
HOMO isosurfaces in Ge;_,Sn, semiconductors (see Fig. 4).
In cases of pure homonuclear systems of pure Ge and Sn, the
LUMO level is solely localized in the Ge 4s4p or Sn Ss5p

J. Appl. Phys. 113, 063517 (2013)

atomic orbits as shown in Figs. 4(a) and 4(i). For pure heter-
onuclear systems of GeysSngs composed of 16 heteronu-
clear Ge-Sn bonds, the interesting feature of the LUMO is
characteristic of a ubiquitous distribution of only localized
Ge 4s4p atomic orbits as shown in Fig. 4(e). In the cases of
the Gegg755n0.125, Geg.755n0.25, and Geg 625500375 arrange-
ments, the LUMO isosurfaces tend to significantly occupy
orbitals around Ge atoms as shown in Figs. 4(b)—4(d). In the
case of the Geg3755n0.625, G€0.255n0.75, and Gep 1255n0 875
arrangements, the LUMO levels are not only around Ge
atoms but also occupied Sn atoms. Thus, the LUMO isosur-
faces are composed mainly of the 4s4p states of the Ge and
the 5s5p states of the Sn atomic orbits as shown in Figs.
4(f)—4(h). Our LUMO isosurfaces with Sn compositions in
the range 0 < x < 0.5 show that the spatial distribution of
localized orbitals exists in the Ge 4s4p bands, indicating that
the various configurations of Ge-Ge homonuclear and Ge-Sn
heteronuclear bonds may not alter the orbital occupancy of
the conduction band state in Ge;_,Sn, semiconductors as
observed in Figs. 4(a)—4(e). In the cases of LUMO isosurfa-
ces with Sn compositions in the range 0.5 < x < 1, the spa-
tial distribution of localized orbitals exists both in the Ge
4s54p bands and in Sn 5s5p bands as seen in Figs. 4(f)—4(h),
suggesting a possible explanation in a strongly effective cou-
pling due to the increasing Sn-Sn homonuclear bonds.

VI. CONCLUSIONS

High quality band structures of Ge;_,Sn, alloys were
studied by first-principles total-energy density functional
sX-LDA calculations. The trend of band gap variation with
respect to the concentration of elements of Ge,_,Sn, alloy is
found computationally. Specifically, our results show that
I"-point band gaps have exponential dependence on Sn com-
positions and L-point band gaps decrease with decreasing the
number of Ge-Ge bonds or increasing the number of Sn-Sn
bonds. The calculated band gap with a composition of 0.016
tin content exhibits the change from indirect to direct band
gap. Analysis of 3D contour maps for the HOMO and
LUMO levels suggests that localized bond charge pockets
contribute to the valence bands and the 4s4p states of the Ge
and the 5s5p states of the Sn atomic orbits cover an energy
range of the bottom of the conduction band.
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